1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
{
lib,
buildPythonPackage,
colorlog,
dataclasses-json,
fetchPypi,
nltk-data,
numpy,
pandas,
poetry-core,
pydantic,
pydateinfer,
python-dateutil,
pythonOlder,
scipy,
symlinkJoin,
type-infer,
}:
let
testNltkData = symlinkJoin {
name = "nltk-test-data";
paths = [
nltk-data.punkt
nltk-data.stopwords
];
};
in
buildPythonPackage rec {
pname = "dataprep-ml";
version = "24.5.1.2";
pyproject = true;
disabled = pythonOlder "3.8";
# using PyPI as github repo does not contain tags or release branches
src = fetchPypi {
pname = "dataprep_ml";
inherit version;
hash = "sha256-pZhHlNcQJLBww7ur2Z6Yb2IdbRsBtjzQAzfa4UzGKt4=";
};
pythonRelaxDeps = [ "pydantic" ];
nativeBuildInputs = [
poetry-core
];
propagatedBuildInputs = [
colorlog
dataclasses-json
numpy
pandas
pydantic
pydateinfer
python-dateutil
scipy
type-infer
];
# PyPI tarball has no tests
doCheck = false;
# Package import requires NLTK data to be downloaded
# It is the only way to set NLTK_DATA environment variable,
# so that it is available in pythonImportsCheck
env.NLTK_DATA = testNltkData;
pythonImportsCheck = [
"dataprep_ml"
"dataprep_ml.cleaners"
"dataprep_ml.helpers"
"dataprep_ml.imputers"
"dataprep_ml.insights"
"dataprep_ml.recommenders"
"dataprep_ml.splitters"
];
meta = with lib; {
description = "Data utilities for Machine Learning pipelines";
homepage = "https://github.com/mindsdb/dataprep_ml";
license = licenses.gpl3Only;
maintainers = with maintainers; [ mbalatsko ];
};
}
|